Principles of cellular resource allocation revealed by condition-dependent proteome profiling
نویسندگان
چکیده
Growing cells coordinate protein translation with metabolic rates. Central to this coordination is ribosome production. Ribosomes drive cell growth, but translation of ribosomal proteins competes with production of non-ribosomal proteins. Theory shows that cell growth is maximized when all expressed ribosomes are constantly translating. To examine whether budding yeast function at this limit of full ribosomal usage, we profiled the proteomes of cells growing in different environments. We find that cells produce excess ribosomal proteins, amounting to a constant ≈8% of the proteome. Accordingly, ≈25% of ribosomal proteins expressed in rapidly growing cells does not contribute to translation. Further, this fraction increases as growth rate decreases and these excess ribosomal proteins are employed when translation demands unexpectedly increase. We suggest that steadily growing cells prepare for conditions that demand increased translation by producing excess ribosomes, at the expense of lower steady-state growth rate.
منابع مشابه
Principles of proteome allocation are revealed using proteomic data and genome-scale models
Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sec...
متن کاملQuantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria
A central aim of cell biology was to understand the strategy of gene expression in response to the environment. Here, we study gene expression response to metabolic challenges in exponentially growing Escherichia coli using mass spectrometry. Despite enormous complexity in the details of the underlying regulatory network, we find that the proteome partitions into several coarse-grained sectors,...
متن کاملCycle Time Reduction and Runtime Rebalancing by Reallocating Dependent Tasks
Business Process Management Systems (BPMS) is a complex information system that provides designing, administrating, and improving the business processes. Task allocation to human resources is one of the most important issues which should be managed more efficiently in BPMS. Task allocation algorithms are defined in order to meet the various policies of organizations. The most important of these...
متن کاملResource Allocation through Context-dependent data envelopment analysis
System designs, optimizing resource allocation to organization units, is still being considered as a complicated problem especially when there are multiple inputs and outputs related to a unit. The algorithm presented here will divide the frontiers obtained with DEA. In this way, we investigate a new approach for resource allocation.
متن کاملAn Algorithm for Resource Allocation through the Classification of DMUs
Data envelopment analysis (DEA) is a non-parametric method for assessing relative efficiency of decision-making units (DMUs). Every single decision-maker with the use of inputs produces outputs. These decision-making units will be defined by the production possibility set. Resource allocation to DMUs is one of the concerns of managers since managers can employ the results of this process to a...
متن کامل